Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder.

Cancer cell | 2009

Despite remarkable responses to the tyrosine kinase inhibitor imatinib, CML patients are rarely cured by this therapy perhaps due to imatinib refractoriness of leukemia-initiating cells (LICs). Evidence for this is limited because of poor engraftment of human CML-LICs in NOD-SCID mice and nonphysiologic expression of oncogenes in retroviral transduction mouse models. To address these challenges, we generated mice bearing conditional knockin alleles of two human oncogenes: HIP1/PDGFbetaR (H/P) and AML1-ETO (A/E). Unlike retroviral transduction, physiologic expression of H/P or A/E individually failed to induce disease, but coexpression of both H/P and A/E led to rapid onset of a fully penetrant, myeloproliferative disorder, indicating cooperativity between these two alleles. Although imatinib dramatically decreased disease burden, LICs persisted, demonstrating imatinib refractoriness of LICs.

Pubmed ID: 19647224 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363-04
  • Agency: NCI NIH HHS, United States
    Id: R01 CA098730
  • Agency: NCI NIH HHS, United States
    Id: R01 CA098730-04S1
  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363-01A1
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363
  • Agency: NCI NIH HHS, United States
    Id: R01 CA82363-03
  • Agency: NCI NIH HHS, United States
    Id: T32 CA009676
  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363-02
  • Agency: NCI NIH HHS, United States
    Id: R01 CA098730-01
  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363-05
  • Agency: NCI NIH HHS, United States
    Id: R01 CA098730-05A1
  • Agency: NCI NIH HHS, United States
    Id: CA009676
  • Agency: NCI NIH HHS, United States
    Id: R01 CA082363-03

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Brainbow mouse resource at Jackson Labs (tool)

RRID:SCR_004894

These Brainbow 1.0 (founder line L) mice allow labeling of individual neuronal types (specifically hippocampal neuron cell bodies, and including motor neurons, dentate gyrus granule cells, pyramidal neurons of the cortex and CA1 area) with approximately 166 distinguishable color variations in cre recombined cells, and may also be useful in conjunction with other Brainbow strains (Stock No. 007901, Stock No. 007911, Stock No. 007921) for neurobiological studies. These Thy1-Brainbow 1.0 (line L) transgenic mice are viable and fertile. The mice possess multiple fluorescent protein sequences uniquely flanked with pairs of incompatible Lox sites alternated to create mutually exclusive recombination events; allowing stochastic expression of multiple fluorescent proteins from a single transgene. Prior to Cre-mediated recombination, the fluorescent protein immediately adjacent to the promoter, dTomato (RFP), is expressed in peripheral and central neurons. When bred to Cre recombinase expressing mice, the resulting offspring can have one of three expression outcomes for each transgene in each cell of the cre expressing tissue(s): dTomato (RFP) (no recombination), mCerulean (CFP), or mYFP. Integration of tandem transgene copies yields combinatorial fluorescent protein expression in each cell, and thus many possible cell colors, providing a way to distinguish adjacent neurons and visualize other cellular interactions. Of note, the single FRT site inserted in the transgene allows tandem transgene copy number reduction through Flp-mediated recombination if desired. These Brainbow 1.0 (founder line L) mice were found to have multiple transgene copies that allow labeling of individual neuronal types (specifically hippocampal neuron cell bodies, and including motor neurons, dentate gyrus granule cells, pyramidal neurons of the cortex and CA1 area) with approximately 166 distinguishable color variations in cre recombined cells, and may also be useful in conjunction with other Brainbow strains (Stock No. 007901, Stock No. 007911, Stock No. 007921) for neurobiological studies. This mouse can be used to support research in many areas including:
Neurobiology Research
* Cre-lox System (loxP-flanked Sequences)
* Fluorescent protein expression in neural tissue
Research Tools
* Cre-lox-System (loxP-flanked Sequences: Test/Reporter)
* Developmental Biology Research (Cre-lox system)
* Developmental Biology Research (transplantation marker for embryonic and adult tissue)
* FLP-FRT System (FRT-flanked Sequences)
* Fluorescent Proteins * Genetics Research (Mutagenesis and Transgenesis: Cre-lox system) * Genetics Research (Tissue/Cell Markers: Cre-lox system) * Genetics Research (Tissue/Cell Markers: astrocyte-specific marker) * Genetics Research (Tissue/Cell Markers: astrocytes) * Genetics Research (Tissue/Cell Markers: astrocytes, neurons) * Genetics Research (Tissue/Cell Markers: glial cells) * Genetics Research (Tissue/Cell Markers: multiple) * Genetics Research (Tissue/Cell Markers: neurons) * Genetics Research (Tissue/Cell Markers: transplantation marker for embryonic and adult tissue) * Neurobiology Research (astrocyte-specific marker) * Neurobiology Research (cell marker) * YFP related Research Tools * Fluorescent Proteins Control: 000664 C57BL/6J (approximate)

View all literature mentions