Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex.

Behavioural brain research | 2009

The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi-Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity.

Pubmed ID: 19643147 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Neurolucida (tool)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions

Neurolucida Explorer (tool)

RRID:SCR_017348

Companion analytical software for Neurolucida and Neurolucida 360, designed to perform extensive morphometric analysis on neuron reconstructions, serial section reconstructions, and brain maps.

View all literature mentions