Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Excitotoxic motoneuron degeneration induced by glutamate receptor agonists and mitochondrial toxins in organotypic cultures of chick embryo spinal cord.

The Journal of comparative neurology | 2009

Glutamate receptor-mediated excitotoxicity and mitochondrial dysfunction appear to play an important role in motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). In the present study we used an organotypic slice culture of chick embryo spinal cord to explore the responsiveness of mature MNs to different excitotoxic stimuli and mitrochondrial inhibition. We found that, in this system, MNs are highly vulnerable to excitotoxins such as glutamate, N-methyl-D-aspartate (NMDA), and kainate (KA), and that the neuroprotective drug riluzole rescues MNs from KA-mediated excitotoxic death. MNs are also sensitive to chronic mitochondrial inhibition induced by malonate and 3-nitropropionic acid (3-NP) in a dose-dependent manner. MN degeneration induced by treatment with mitochondrial toxins displays structural changes similar to those seen following excitotoxicity and can be prevented by applying either the antiexcitotoxic drug 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) or riluzole. Excitotoxicity results in an increased frequency of normal spontaneous Ca2+ oscillations in MNs, which is followed by a sustained deregulation of intracellular Ca2+. Tolerance to excitotoxic MN death resulting from chronic exposure to excitotoxins correlates with a reduced excitotoxin-induced increase in intracellular Ca2+ and increased thapsigargin-sensitive Ca2+ stores.

Pubmed ID: 19634179 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.