Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human protein phosphatase PP6 regulatory subunits provide Sit4-dependent and rapamycin-sensitive sap function in Saccharomyces cerevisiae.

PloS one | 2009

In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155, Sap185, and Sap190) mediate G(1) to S cell cycle progression and a number of signaling events controlled by the target of rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and three PP6R proteins, share significant sequence identity with their yeast counterparts. However, relatively little is known about the functions of the PP6 and PP6R proteins in mammalian cells. Here we demonstrate that the human PP6R proteins physically interact with Sit4 when expressed in yeast cells. Remarkably, expression of PP6R2 and PP6R3 but not expression of PP6R1 rescues the growth defect and rapamycin hypersensitivity of yeast cells lacking all four Saps, and these effects require Sit4. Moreover, PP6R2 and PP6R3 enhance cyclin G(1) gene expression and DNA synthesis, and partially abrogate the G(1) cell cycle delay and the budding defect of the yeast quadruple sap mutant strain. In contrast, the human PP6R proteins only modestly support nitrogen catabolite gene expression and are unable to restore normal levels of eIF2alpha phosphorylation in the quadruple sap mutant strain. These results illustrate that the human PP6-associated proteins are capable of providing distinct rapamycin-sensitive and Sit4-dependent Sap functions in the heterologous context of the yeast cell. We hypothesize that the human Saps may play analogous roles in mTORC1-PP6 signaling events in metazoans.

Pubmed ID: 19621075 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA114107
  • Agency: NCI NIH HHS, United States
    Id: R01 CA40024

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Bioinformatics Institute (tool)

RRID:SCR_004727

Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.

View all literature mentions