Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Compression regulates mitotic spindle length by a mechanochemical switch at the poles.

Current biology : CB | 2009

Although the molecules involved in mitosis are becoming better characterized, we still lack an understanding of the emergent mechanical properties of the mitotic spindle. For example, we cannot explain how spindle length is determined. To gain insight into how forces are generated and responded to in the spindle, we developed a method to apply controlled mechanical compression to metaphase mitotic spindles in living mammalian cells while monitoring microtubules and kinetochores by fluorescence microscopy.

Pubmed ID: 19540117 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: GM039565
  • Agency: NIGMS NIH HHS, United States
    Id: P50 GM068763
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM039565-22
  • Agency: NIGMS NIH HHS, United States
    Id: P50 GM068763-060010
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM039565
  • Agency: NIGMS NIH HHS, United States
    Id: R37 GM039565

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions