Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neuronal fiber tracts connecting the brain and ventral nerve cord of the early Drosophila larva.

The Journal of comparative neurology | 2009

By using a combination of dye injections, clonal labeling, and molecular markers, we have reconstructed the axonal connections between brain and ventral nerve cord of the first-instar Drosophila larva. Out of the approximately 1,400 neurons that form the early larval brain hemisphere, less than 50 cells have axons descending into the ventral nerve cord. Descending neurons fall into four topologically defined clusters located in the anteromedial, anterolateral, dorsal, and basoposterior brain, respectively. The anterolateral cluster represents a lineage derived from a single neuroblast. Terminations of descending neurons are almost exclusively found in the anterior part of the ventral nerve cord, represented by the gnathal and thoracic neuromeres. This region also contains small numbers of neurons with axons ascending into the brain. Terminals of the ascending axons are found in the same basal brain regions that also contain descending neurons. We have mapped ascending and descending axons to the previously described scaffold of longitudinal fiber tracts that interconnect different neuromeres of the ventral nerve cord and the brain. This work provides a structural framework for functional and genetic studies addressing the control of Drosophila larval behavior by brain circuits.

Pubmed ID: 19459219 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Blender (tool)

RRID:SCR_008606

Blender is the free open source 3D content creation suite, available for all major operating systems under the GNU General Public License. Because of the overwhelming success of the first open movie project, Ton Roosendaal, the Blender Foundation''s chairman, has established the Blender Institute. This now is the permanent office and studio to more efficiently organize the Blender Foundation goals, but especially to coordinate and facilitate Open Projects related to 3D movies, games or visual effects.

View all literature mentions

TrakEM2 (tool)

RRID:SCR_008954

An ImageJ plugin for morphological data mining, three-dimensional modeling and image stitching, registration, editing and annotation. Two independent modalities exist: either XML-based projects, working directly with the file system, or database-based projects, working on top of a local or remote PostgreSQL database. What can you do with it? * Semantic segmentation editor: order segmentations in tree hierarchies, whose template is exportable for reuse in other, comparable projects. * Model, visualize and export 3D. * Work from your laptop on your huge, remote image storage. * Work with an endless number of images, limited only by the hard drive capacity. Dozens of formats supported thanks to LOCI Bioformats and ImageJ. * Import stacks and even entire grids (montages) of images, automatically stitch them together and homogenize their histograms for best montaging quality. * Add layers conveniently. A layer represents, for example, one 50 nm section (for TEM) or a confocal section. Each layer has its own Z coordinate and thickness, and contains images, labels, areas, nodes of 3d skeletons, profiles... * Insert layer sets into layers: so your electron microscopy serial sections can live inside your optical microscopy sections. * Run any ImageJ plugin on any image. * Measure everything: areas, volumes, pixel intensities, etc. using both built-in data structures and segmentation types, and standard ImageJ ROIs. And with double dissectors! * Visualize RGB color channels changing the opacity of each on the fly, non-destructively. * Annotate images non-destructively with floating text labels, which you can rotate/scale on the fly and display in any color. * Montage/register/stitch/blend images manually with transparencies, semiautomatically, or fully automatically within and across sections, with translation, rigid, similarity and affine models with automatically extracted SIFT features. * Correct the lens distortion present in the images, like those generated in transmission electron microscopy. * Add alpha masks to images using ROIs, for example to split images in two or more parts, or to remove the borders of an image or collection of images. * Model neuronal arbors with 3D skeletons (with areas or radiuses), and synapses with connectors. * Undo all steps. And much more...

View all literature mentions

Jackson ImmunoResearch (tool)

RRID:SCR_010488

A commercial antibody vendor, specializing in secondary antibodies.

View all literature mentions

Dilp2 (antibody)

RRID:AB_2314316

This unknown targets

View all literature mentions

RABBIT IGG FRACTION TO β-GALACTOSIDASE (antibody)

RRID:AB_2334934

This unknown targets RABBIT IGG FRACTION TO β-GALACTOSIDASE

View all literature mentions

Anti-GFP, N-terminal antibody produced in rabbit (antibody)

RRID:AB_439690

This polyclonal targets GFP N-terminal antibody produced in rabbit

View all literature mentions