Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutation in Caenorhabditis elegans Krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition.

Experimental cell research | 2009

In vertebrates, adipose tissue stores energy in the form of fat. Fat storage is tightly controlled by and dynamically balanced with energy expenditure under physiological settings; the perturbation of fat in either excess (obese) or deficit (lipodystrophy) has devastating pathologic consequences in the fueling of homeostasis and organismal fitness. The process by which fat storage is coordinated through positive and negative feedback signals is still poorly understood. To address potential mechanisms underlying fat storage we study a Caenorhabditis elegans Krüppel-like transcription factor, Ce-klf-3 and demonstrate that klf-3 is a hitherto unrecognized key regulator of fat metabolism in C. elegans. The Ce-klf-3 is highly expressed during larval development and predominantly present in intestine: the site of fat digestion, absorption, storage, and utilization. We found a strong positive correlation between klf-3 expression and fat deposition in a worm's intestine. Significantly, a klf-3 (ok1975) loss-of-function mutation, characterized by the deletion of a 1658-bp sequence spanning the 3' end of exon 2 through to the 5' end of exon 3 of klf-3, enhanced fat deposition in the intestine and caused severe defects in worm reproduction. Although klf-3 mutants seemed very similar to wild type worms in appearance and life span, 70% of mutants became semi-sterile, each producing 40-50 viable progenies, and the remaining 30% were rendered completely sterile toward adulthood. Notably, both mutant types displayed extensive deposition of fat in the intestine. Our study also demonstrates that klf-3 is critical for maintaining normal fatty acid composition by regulating genes involved in a fatty acid desaturation pathway. Strikingly, klf-3 mutant animals with impaired fatty acid beta-oxidation pathway genes resulted in fat accumulation in the mutant worm. We present the first clear in vivo evidence supporting essential regulatory roles of KLF-3 in fat storage in C. elegans and shed light on the human equivalent in disease-gene association.

Pubmed ID: 19427851 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WormBase (tool)

RRID:SCR_003098

Central data repository for nematode biology including complete genomic sequence, gene predictions and orthology assignments from range of related nematodes.Data concerning genetics, genomics and biology of C. elegans and related nematodes. Derived from initial ACeDB database of C. elegans genetic and sequence information, WormBase includes genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. Maintains public FTP site where researchers can find many commonly requested files and datasets, WormBase software and prepackaged databases.

View all literature mentions