Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of cerebrovascular Shaker-type K(+) channels: a shared vasodilator defect of genetic and renal hypertensive rats.

American journal of physiology. Heart and circulatory physiology | 2009

The cerebral arteries of hypertensive rats are depolarized and highly myogenic, suggesting a loss of K(+) channels in the vascular smooth muscle cells (VSMCs). The present study evaluated whether the dilator function of the prominent Shaker-type voltage-gated K(+) (K(V)1) channels is attenuated in middle cerebral arteries from two rat models of hypertension. Block of K(V)1 channels by correolide (1 micromol/l) or psora-4 (100 nmol/l) reduced the resting diameter of pressurized (80 mmHg) cerebral arteries from normotensive rats by an average of 28 +/- 3% or 26 +/- 3%, respectively. In contrast, arteries from spontaneously hypertensive rats (SHR) and aortic-banded (Ao-B) rats with chronic hypertension showed enhanced Ca(2+)-dependent tone and failed to significantly constrict to correolide or psora-4, implying a loss of K(V)1 channel-mediated vasodilation. Patch-clamp studies in the VSMCs of SHR confirmed that the peak K(+) current density attributed to K(V)1 channels averaged only 5.47 +/- 1.03 pA/pF, compared with 9.58 +/- 0.82 pA/pF in VSMCs of control Wistar-Kyoto rats. Subsequently, Western blots revealed a 49 +/- 7% to 66 +/- 7% loss of the pore-forming alpha(1.2)- and alpha(1.5)-subunits that compose K(V)1 channels in cerebral arteries of SHR and Ao-B rats compared with control animals. In each case, the deficiency of K(V)1 channels was associated with reduced mRNA levels encoding either or both alpha-subunits. Collectively, these findings demonstrate that a deficit of alpha(1.2)- and alpha(1.5)-subunits results in a reduced contribution of K(V)1 channels to the resting diameters of cerebral arteries from two rat models of hypertension that originate from different etiologies.

Pubmed ID: 19411284 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: R01-HL-59238

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_10674277

This monoclonal targets Kv1.2 potassium channel

View all literature mentions

Kv1.5 potassium channel (antibody)

RRID:AB_10675288

This monoclonal targets Kv1.5 potassium channel

View all literature mentions

Anti-Kv1.5 K+ Channel Antibody (antibody)

RRID:AB_2131324

This monoclonal targets Kv1.5 K+ channel

View all literature mentions