Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dopaminergic activation excites rat lateral habenular neurons in vivo.

Neuroscience | 2009

The lateral habenular complex (LHb) of the epithalamus is part of a dorsal diencephalic conduction system connecting basal forebrain with regulatory midbrain nuclei. The LHb has been implicated in the regulation of ascending monoaminergic transmission, particularly midbrain dopaminergic neuronal activity. Here, we have investigated whether the LHb in turn is subject to dopaminergic modulation. Alterations in spontaneous neuronal activity within the LHb following systemic application of dopaminergic drugs have been examined in anesthetized rats using extracellular single unit recordings. The administration of apomorphine (2 mg/kg) resulted in an excitation of individual LHb neurons. On average, the spontaneous action potential firing of the LHb neurons was increased by 39%. However, the apomorphine effect showed marked topographic differences within the LHb. Particularly, a small subset of neurons in the lateral division of the LHb, which was localized within the oval subnucleus, showed an apomorphine-mediated increase in discharge frequency by 96%. In contrast, spontaneous discharge of neurons within other areas of the lateral division was not modified. Likewise, within the medial division of the LHb, a region that preferentially receives projections from dopaminergic midbrain nuclei, the majority of neurons failed to show apomorphine-mediated alterations in action potential firing. However, within the superior subnucleus of this division, an area with yet unclear afferent supply, spontaneous neuronal firing was enhanced by 56%. The apomorphine-mediated excitation of LHb neurons was antagonized by coapplication of haloperidol (2 mg/kg), which alone did not alter spontaneous action potential firing of individual LHb neurons. The present study demonstrates that spontaneous activity of distinct subsets of neurons within the LHb is strongly enhanced by systemic activation of dopaminergic receptors. Despite the small sample size, the data suggest that this dopaminergic modulation shows a topographic specificity. Therefore, the results support the hypothesis of a functional subnuclear organization of the rat habenular complex.

Pubmed ID: 19374940 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions