Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hybrid structural model of the complete human ESCRT-0 complex.

http://www.ncbi.nlm.nih.gov/pubmed/19278655

The human Hrs and STAM proteins comprise the ESCRT-0 complex, which sorts ubiquitinated cell surface receptors to lysosomes for degradation. Here we report a model for the complete ESCRT-0 complex based on the crystal structure of the Hrs-STAM core complex, previously solved domain structures, hydrodynamic measurements, and Monte Carlo simulations. ESCRT-0 expressed in insect cells has a hydrodynamic radius of RH = 7.9 nm and is a 1:1 heterodimer. The 2.3 Angstroms crystal structure of the ESCRT-0 core complex reveals two domain-swapped GAT domains and an antiparallel two-stranded coiled-coil, similar to yeast ESCRT-0. ESCRT-0 typifies a class of biomolecular assemblies that combine structured and unstructured elements, and have dynamic and open conformations to ensure versatility in target recognition. Coarse-grained Monte Carlo simulations constrained by experimental RH values for ESCRT-0 reveal a dynamic ensemble of conformations well suited for diverse functions.

Pubmed ID: 19278655 RIS Download

Mesh terms: Adaptor Proteins, Signal Transducing | Amino Acid Sequence | Animals | Chromatography, Gel | Crystallography, X-Ray | Endosomal Sorting Complexes Required for Transport | HeLa Cells | Humans | Mice | Models, Molecular | Molecular Sequence Data | Monte Carlo Method | Phosphoproteins | Surface Plasmon Resonance | Ubiquitin

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: Intramural NIH HHS, Id: Z01 DK036126-01

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.