Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections.

Neuroscience | 2009

The establishment of neural circuits involves both the precise positioning of cells within brain regions and projection of axons to specific target cells. In the cerebellum (Cb), the medial-lateral (M-L) and anterior-posterior (A-P) position of each Purkinje cell (PC) and the topography of its axon can be defined with respect to two coordinate systems within the Cb; one based on the pattern of lobules and the other on PC gene expression in parasagittal clusters in the embryo (e.g. Pcp2) and stripes in the adult (e.g. ZebrinII). The relationship between the embryonic clusters of molecularly defined PCs and particular adult PC stripes is not clear. Using a mouse genetic inducible fate mapping (GIFM) approach and a Pcp2-CreER-IRES-hAP transgene, we marked three bilateral clusters of PC clusters with myristolated green fluorescent protein (mGfp) on approximately embryonic day (E) 15 and followed their fate into adulthood. We found that these three clusters contributed specifically to ZebrinII-expressing PCs, including nine of the adult stripes. This result suggests that embryonic PCs maintain a particular molecular identity, and that each embryonic cluster can contribute PCs to more than one adult M-L stripe. Each PC projects a primary axon to one of the deep cerebellar nuclei (DCN) or the vestibular nuclei in the brainstem in an organized fashion that relates to the position of the PCs along the M-L axis. We characterized when PC axons from the three M-L clusters acquire topographic projections. Using a combination of GIFM to mark the PC clusters with mGfp and staining for human placental alkaline phosphatase (hAP) in Pcp2-CreER-IRES-hAP transgenic embryos we found that axons from each embryonic PC cluster intermingled with neurons within particular DCN or projected out of the Cb toward the vestibular nuclei by E14.5. These studies show that PC molecular patterning, efferent circuitry, and DCN nucleogenesis occur simultaneously, suggesting a link between these processes.

Pubmed ID: 19150487 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA128158
  • Agency: Autism Speaks, United States
    Id: AS1658
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD035768
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD035768-10
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH085726
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH085726-01
  • Agency: NCI NIH HHS, United States
    Id: R01 CA128158-11
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD035768-11

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Volocity 3D Image Analysis Software (tool)

RRID:SCR_002668

3D image analysis software to visualize, analyze and validate 3D fluorescence images from a wide range of confocal microscopy, widefield and high content screening systems. It is fully integrated for a seamless user experience.

View all literature mentions