Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phylogenetic and functional assessment of orthologs inference projects and methods.

PLoS computational biology | 2009

Accurate genome-wide identification of orthologs is a central problem in comparative genomics, a fact reflected by the numerous orthology identification projects developed in recent years. However, only a few reports have compared their accuracy, and indeed, several recent efforts have not yet been systematically evaluated. Furthermore, orthology is typically only assessed in terms of function conservation, despite the phylogeny-based original definition of Fitch. We collected and mapped the results of nine leading orthology projects and methods (COG, KOG, Inparanoid, OrthoMCL, Ensembl Compara, Homologene, RoundUp, EggNOG, and OMA) and two standard methods (bidirectional best-hit and reciprocal smallest distance). We systematically compared their predictions with respect to both phylogeny and function, using six different tests. This required the mapping of millions of sequences, the handling of hundreds of millions of predicted pairs of orthologs, and the computation of tens of thousands of trees. In phylogenetic analysis or in functional analysis where high specificity is required, we find that OMA and Homologene perform best. At lower functional specificity but higher coverage level, OrthoMCL outperforms Ensembl Compara, and to a lesser extent Inparanoid. Lastly, the large coverage of the recent EggNOG can be of interest to build broad functional grouping, but the method is not specific enough for phylogenetic or detailed function analyses. In terms of general methodology, we observe that the more sophisticated tree reconstruction/reconciliation approach of Ensembl Compara was at times outperformed by pairwise comparison approaches, even in phylogenetic tests. Furthermore, we show that standard bidirectional best-hit often outperforms projects with more complex algorithms. First, the present study provides guidance for the broad community of orthology data users as to which database best suits their needs. Second, it introduces new methodology to verify orthology. And third, it sets performance standards for current and future approaches.

Pubmed ID: 19148271 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Molecular Biology Laboratory (tool)

RRID:SCR_004473

Intergovernmental organisation funded by public research money from its member states in Europe. Groups and laboratories perform basic research in molecular biology and molecular medicine, training for scientists, students and visitors. Provides development of services, new instruments and methods, data and technology in its member states.

View all literature mentions

COG (tool)

RRID:SCR_007139

A database for phylogenetic classification for proteins encoded in complete genomes. Clusters of Orthologous Groups of proteins (COGs) were delineated by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages and thus corresponds to an ancient conserved domain. Please be aware that COGs hasn't been updated in many years and will not be.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions