Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Involvement of R-type Ca2+ channels in neurotransmitter release from spinal dorsolateral funiculus terminals synapsing motoneurons.

The Journal of comparative neurology | 2009

Molecular studies have revealed the presence of R-type voltage-gated Ca(2+) channels at pre- and postsynaptic regions; however, no evidence for the participation of these channels in transmitter release has been presented for the spinal cord. Here we characterize the effects of SNX-482, a selective R channel blocker, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of dorsolateral funiculus (DLF) terminals in a slice preparation from the adult turtle spinal cord. SNX-482 inhibited neurotransmission in a dose-dependent manner, with an IC(50) of approximately 9 +/- 1 nM. The EPSP time course and membrane time constant of the motoneurons were not altered, suggesting a presynaptic mechanism. The toxin inhibited the residual component of the EPSPs recorded in the presence of N- and P/Q-type Ca(2+) channel blockers, strongly suggesting a role for the R channels in neurotransmission at the spinal cord DLF terminals. Consistently with this, RT-PCR analysis of turtle spinal cord segments revealed the expression of the Ca(V)2.3 pore-forming (alpha(1E)) subunit of R channels, whereas the use of anti-alpha(1E)-specific antibodies resulted in its localization in the DLF fibers as demonstrated by immunohistochemistry coupled with laser confocal microscopy.

Pubmed ID: 19127523 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.