Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL.

PloS one | 2008

The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFkappaB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFkappaB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFkappaB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKgamma/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFkappaB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function.

Pubmed ID: 19112497 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI044264
  • Agency: NIAID NIH HHS, United States
    Id: 5R01AI044264-10

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Boston Biochem (tool)

RRID:SCR_004761

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 17, 2021. An Antibody supplier.

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions