Preparing your results

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pds1p is required for meiotic recombination and prophase I progression in Saccharomyces cerevisiae.

Sister-chromatid separation at the metaphase-anaphase transition is regulated by a proteolytic cascade. Destruction of the securin Pds1p liberates the Esp1p separase, which ultimately targets the mitotic cohesin Mcd1p/Scc1p for destruction. Pds1p stabilization by the spindle or DNA damage checkpoints prevents sister-chromatid separation while mutants lacking PDS1 (pds1Delta) are temperature sensitive for growth due to elevated chromosome loss. This report examined the role of the budding yeast Pds1p in meiotic progression using genetic, cytological, and biochemical assays. Similar to its mitotic function, Pds1p destruction is required for metaphase I-anaphase I transition. However, even at the permissive temperature for growth, pds1Delta mutants arrest with prophase I spindle and nuclear characteristics. This arrest was partially suppressed by preventing recombination initiation or by inactivating a subset of recombination checkpoint components. Further studies revealed that Pds1p is required for recombination in both double-strand-break formation and synaptonemal complex assembly. Although deleting PDS1 did not affect the degradation of the meiotic cohesin Rec8p, Mcd1p was precociously destroyed as cells entered the meiotic program. This role is meiosis specific as Mcd1p destruction is not altered in vegetative pds1Delta cultures. These results define a previously undescribed role for Pds1p in cohesin maintenance, recombination, and meiotic progression.

Pubmed ID: 19001291


  • Cooper KF
  • Mallory MJ
  • Guacci V
  • Lowe K
  • Strich R



Publication Data

January 13, 2009

Associated Grants

  • Agency: NCI NIH HHS, Id: CA099003
  • Agency: NIGMS NIH HHS, Id: GM62178

Mesh Terms

  • Cell Cycle Proteins
  • Chromatin
  • Chromosomal Proteins, Non-Histone
  • DNA Breaks, Double-Stranded
  • Gene Deletion
  • Gene Expression Regulation, Fungal
  • Genes, Fungal
  • Meiotic Prophase I
  • Mutation
  • Nuclear Proteins
  • Phosphoproteins
  • Recombination, Genetic
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Securin
  • Signal Transduction
  • Spindle Apparatus
  • Synaptonemal Complex
  • Transcription, Genetic