• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

ATRMec1 phosphorylation-independent activation of Chk1 in vivo.

The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.

Pubmed ID: 18984588

Authors

  • Chen Y
  • Caldwell JM
  • Pereira E
  • Baker RW
  • Sanchez Y

Journal

The Journal of biological chemistry

Publication Data

January 2, 2009

Associated Grants

  • Agency: NCI NIH HHS, Id: P30 CA023108
  • Agency: NIEHS NIH HHS, Id: P30 ES06096
  • Agency: NCI NIH HHS, Id: R01 CA084463
  • Agency: NCI NIH HHS, Id: R01 CA84463
  • Agency: NIEHS NIH HHS, Id: U01 ES011038
  • Agency: NIEHS NIH HHS, Id: U01 ES11038

Mesh Terms

  • Amino Acid Substitution
  • DNA Damage
  • DNA Replication
  • Enzyme Activation
  • Hydroxyurea
  • MAP Kinase Kinase 1
  • Nucleic Acid Synthesis Inhibitors
  • Phosphorylation
  • Point Mutation
  • Protein Kinases
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins