Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies.

BMC genomics | 2008

By assaying hundreds of thousands of single nucleotide polymorphisms, genome wide association studies (GWAS) allow for a powerful, unbiased review of the entire genome to localize common genetic variants that influence health and disease. Although it is widely recognized that some correction for multiple testing is necessary, in order to control the family-wide Type 1 Error in genetic association studies, it is not clear which method to utilize. One simple approach is to perform a Bonferroni correction using all n single nucleotide polymorphisms (SNPs) across the genome; however this approach is highly conservative and would "overcorrect" for SNPs that are not truly independent. Many SNPs fall within regions of strong linkage disequilibrium (LD) ("blocks") and should not be considered "independent".

Pubmed ID: 18976480 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Intramural NIH HHS, United States

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Haploview (tool)

RRID:SCR_003076

A Java based software tool designed to simplify and expedite the process of haplotype analysis by providing a common interface to several tasks relating to such analyses. Haploview currently allows users to examine block structures, generate haplotypes in these blocks, run association tests, and save the data in a number of formats. All functionalities are highly customizable. (entry from Genetic Analysis Software) * LD & haplotype block analysis * haplotype population frequency estimation * single SNP and haplotype association tests * permutation testing for association significance * implementation of Paul de Bakker's Tagger tag SNP selection algorithm. * automatic download of phased genotype data from HapMap * visualization and plotting of PLINK whole genome association results including advanced filtering options Haploview is fully compatible with data dumps from the HapMap project and the Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in command line mode) in thousands of individuals. Note: Haploview is currently on a development and support freeze. The team is currently looking at a variety of options in order to provide support for the software. Haploview is an open source project hosted by SourceForge. The source can be downloaded at the SourceForge project site.

View all literature mentions