Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

The Journal of comparative neurology | 2008

Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys.

Pubmed ID: 18831528 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Calretinin antibody (antibody)

RRID:AB_10000321

This polyclonal targets calretinin

View all literature mentions

Monoclonal Anti-Calcitonin Gene-Related Peptide antibody produced in mouse (antibody)

RRID:AB_1078377

This monoclonal targets Calcitonin Gene-Related Peptide antibody produced in mouse

View all literature mentions

Peroxidase Anti-Peroxidase Soluble Complex antibody produced in mouse (antibody)

RRID:AB_1079563

This monoclonal targets Peroxidase Peroxidase Soluble Complex antibody produced in mouse

View all literature mentions

dopamine (antibody)

RRID:AB_2314334

This unknown targets

View all literature mentions

Anti-Neuropeptide Y (NPY) antibody produced in rabbit (antibody)

RRID:AB_260814

This polyclonal targets Neuropeptide Y (NPY) antibody produced in rabbit

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody (antibody)

RRID:AB_390204

This polyclonal targets Tyrosine Hydroxylase

View all literature mentions

Monoclonal Anti-BrdU antibody produced in mouse (antibody)

RRID:AB_476793

This monoclonal targets BrdU antibody produced in mouse

View all literature mentions

5-HT (Serotonin) Rabbit Antibody (antibody)

RRID:AB_572263

This polyclonal targets Serotonin

View all literature mentions