Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket.

EMBO reports | 2008

Interleukin-33 (IL-33) is an IL-1-like ligand for the ST2 receptor that stimulates the production of Th2-associated cytokines. Recently, we showed that IL-33 is a chromatin-associated factor in the nucleus of endothelial cells in vivo. Here, we report the identification of a short IL-33 chromatin-binding peptide that shares striking similarities with a motif found in Kaposi sarcoma herpesvirus LANA (latency-associated nuclear antigen), which is responsible for the attachment of viral genomes to mitotic chromosomes. Similar to LANA, the IL-33 peptide docks into the acidic pocket formed by the H2A-H2B dimer at the nucleosomal surface and regulates chromatin compaction by promoting nucleosome-nucleosome interactions. Taken together, our data provide important new insights into the nuclear roles of IL-33, and show a unique example of molecular mimicry of a chromatin-associated cytokine by a DNA tumour virus. In addition, the data provide, to the best of our knowledge, the first demonstration of the existence of non-histone cellular factors that bind to the acidic pocket of the nucleosome.

Pubmed ID: 18688256 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DelPhi (tool)

RRID:SCR_008669

DelPhi provides numerical solutions to the Poisson-Boltzmann equation (both linear and nonlinear form) for molecules of arbitrary shape and charge distribution. The current version is fast, accurate, and can handle extremely high lattice dimensions. It also includes flexible features for assigning different dielectric constants to different regions of space and treating systems containing mixed salt solutions. DelPhi takes as input a coordinate file format of a molecule or equivalent data for geometrical objects and/or charge distributions and calculates the electrostatic potential in and around the system, using a finite difference solution to the Poisson-Boltzmann equation. DelPhi is a versatile electrostatics simulation program that can be used to investigate electrostatic fields in a variety of molecular systems. Features of DelPhi include solutions to mixtures of salts of different valence; solutions to different dielectric constants to different regions of space; and estimation of the best relaxation parameter at run time.

View all literature mentions