We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation.

The EMBO journal | Aug 6, 2008

Viruses are detected by different classes of pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-like helicases. Engagement of PRRs leads to activation of interferon (IFN)-regulatory factor 3 (IRF3) and IRF7 through IKKepsilon and TBK1 and consequently IFN-beta induction. Vaccinia virus (VACV) encodes proteins that manipulate host signalling, sometimes by targeting uncharacterised proteins. Here, we describe a novel VACV protein, K7, which can inhibit PRR-induced IFN-beta induction by preventing TBK1/IKKepsilon-mediated IRF activation. We identified DEAD box protein 3 (DDX3) as a host target of K7. Expression of DDX3 enhanced Ifnb promoter induction by TBK1/IKKepsilon, whereas knockdown of DDX3 inhibited this, and virus- or dsRNA-induced IRF3 activation. Further, dominant-negative DDX3 inhibited virus-, dsRNA- and cytosolic DNA-stimulated Ccl5 promoter induction, which is also TBK1/IKKepsilon dependent. Both K7 binding and enhancement of Ifnb induction mapped to the N-terminus of DDX3. Furthermore, virus infection induced an association between DDX3 and IKKepsilon. Therefore, this study shows for the first time the involvement of a DEAD box helicase in TBK1/IKKepsilon-mediated IRF activation and Ifnb promoter induction.

Pubmed ID: 18636090 RIS Download

Mesh terms: Amino Acid Sequence | Cell Line | Cell Nucleus | Chemokine CCL5 | Cytoplasm | DEAD-box RNA Helicases | Humans | I-kappa B Kinase | Interferon Regulatory Factor-3 | Interferon Regulatory Factor-7 | Interferon-beta | Molecular Sequence Data | Promoter Regions, Genetic | Protein-Serine-Threonine Kinases | Receptors, Pattern Recognition | Vaccinia virus | Viral Proteins

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.