Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic and physiologic dissection of the vertebrate cardiac conduction system.

Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS) to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP)(s878), that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblin(s634) revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP)(s878) line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.

Pubmed ID: 18479184


  • Chi NC
  • Shaw RM
  • Jungblut B
  • Huisken J
  • Ferrer T
  • Arnaout R
  • Scott I
  • Beis D
  • Xiao T
  • Baier H
  • Jan LY
  • Tristani-Firouzi M
  • Stainier DY


PLoS biology

Publication Data

May 13, 2008

Associated Grants

  • Agency: PHS HHS, Id: K08
  • Agency: NHLBI NIH HHS, Id: R01 HL094414

Mesh Terms

  • Animals
  • Animals, Genetically Modified
  • Cardiac Electrophysiology
  • Connexin 43
  • Connexins
  • Embryo, Nonmammalian
  • Gene Expression Regulation, Developmental
  • Heart Conduction System
  • Hemodynamics
  • Mutation
  • Myocardium
  • Zebrafish