Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes.

Current biology : CB | 2008

Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.

Pubmed ID: 18403202 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: Wellcome Trust, United Kingdom
    Id: 078566
  • Agency: Wellcome Trust, United Kingdom
    Id: 078566/A/05/Z

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Kyoto Encyclopedia of Genes and Genomes Expression Database (tool)

RRID:SCR_001120

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

View all literature mentions

PlantCyc (tool)

RRID:SCR_002110

Multi species reference database. Comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.

View all literature mentions

Amplicon (tool)

RRID:SCR_003294

Software tool for designing PCR primers on aligned groups of DNA sequences. The most important application is the design of "group-specific" PCR primer sets that amplify a DNA region from a given taxonomic group but do not amplify orthologous regions from other taxonomic groups. It is written in Python 2.3 and Tkinter 8.4. The current script was created for Windows and an executable is available. Future versions of the script should be able to run on Linux and Mac

View all literature mentions

CellTracker (tool)

RRID:SCR_021718

Software tool for image processing to perform automated, semi-automated, and manual cell migration detection. Open source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. Written in MATLAB. Works with Windows, Macintosh and UNIX based systems.

View all literature mentions