• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Novel targets for Huntington's disease in an mTOR-independent autophagy pathway.

Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.

Pubmed ID: 18391949


  • Williams A
  • Sarkar S
  • Cuddon P
  • Ttofi EK
  • Saiki S
  • Siddiqi FH
  • Jahreiss L
  • Fleming A
  • Pask D
  • Goldsmith P
  • O'Kane CJ
  • Floto RA
  • Rubinsztein DC


Nature chemical biology

Publication Data

May 22, 2008

Associated Grants

  • Agency: Wellcome Trust, Id: 064354
  • Agency: Medical Research Council, Id: G0400066
  • Agency: Medical Research Council, Id: G0600194
  • Agency: Medical Research Council, Id: G0600194(77639)
  • Agency: Medical Research Council, Id: G108/485
  • Agency: Biotechnology and Biological Sciences Research Council, Id:
  • Agency: Medical Research Council, Id:
  • Agency: Wellcome Trust, Id:

Mesh Terms

  • Animals
  • Autophagy
  • Calcium Channels, L-Type
  • Clonidine
  • Cyclic AMP
  • Humans
  • Huntington Disease
  • Imidazoline Receptors
  • Minoxidil
  • Protein Kinases
  • Signal Transduction
  • TOR Serine-Threonine Kinases
  • Type C Phospholipases
  • Verapamil