Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice.

Osteoclastogenesis is a tightly regulated biological process, and deregulation can lead to severe bone disorders such as osteoporosis. The regulation of osteoclastic signaling is incompletely understood, but ubiquitination of TNF receptor-associated factor 6 (TRAF6) has recently been shown to be important in mediating this process. We therefore investigated the role of the recently identified deubiquitinating enzyme CYLD in osteoclastogenesis and found that mice with a genetic deficiency of CYLD had aberrant osteoclast differentiation and developed severe osteoporosis. Cultured osteoclast precursors derived from CYLD-deficient mice were hyperresponsive to RANKL-induced differentiation and produced more and larger osteoclasts than did controls upon stimulation. We assessed the expression pattern of CYLD and found that it was drastically upregulated during RANKL-induced differentiation of preosteoclasts. Furthermore, CYLD negatively regulated RANK signaling by inhibiting TRAF6 ubiquitination and activation of downstream signaling events. Interestingly, we found that CYLD interacted physically with the signaling adaptor p62 and thereby was recruited to TRAF6. These findings establish CYLD as a crucial negative regulator of osteoclastogenesis and suggest its involvement in the p62/TRAF6 signaling axis.

Pubmed ID: 18382763


  • Jin W
  • Chang M
  • Paul EM
  • Babu G
  • Lee AJ
  • Reiley W
  • Wright A
  • Zhang M
  • You J
  • Sun SC


The Journal of clinical investigation

Publication Data

May 2, 2008

Associated Grants

  • Agency: NIAID NIH HHS, Id: AI057555
  • Agency: NIAID NIH HHS, Id: AI064639
  • Agency: NCRR NIH HHS, Id: C06 RR-15428-01
  • Agency: NCI NIH HHS, Id: CA94922

Mesh Terms

  • Animals
  • Bone Resorption
  • Bone and Bones
  • Cell Differentiation
  • Cysteine Endopeptidases
  • Male
  • Mice
  • Mice, Knockout
  • Osteoclasts
  • Osteoporosis
  • RANK Ligand
  • Receptor Activator of Nuclear Factor-kappa B
  • Signal Transduction
  • TNF Receptor-Associated Factor 6
  • Transcription Factors
  • Ubiquitin