Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation.

Gene expression patterns : GEP | 2008

The mature nephron forms from a simple epithelial vesicle into an elaborate structure with distinct regions of specialized physiological function. The molecular components driving the process of nephron development are not well understood. To identify genes that may be informative in this process we conducted a transcriptional profiling screen using Wnt4 mutant kidneys. In Wnt4-/- homozygous mice, condensates and pretubular aggregates are induced, however, epithelial renal vesicles fail to form and subsequent tubulogenesis is blocked. A transcriptional profile comparison between wildtype and Wnt4-/- mutant kidneys at E14.5 was performed using Affymetrix oligonucleotide microarrays to identify nephron-expressed genes. This approach identified 236 genes with expression levels >1.8-fold higher in wildtype versus mutant kidneys, amongst these were a number of known nephron component markers confirming the validity of the screen. These results were further detailed by wholemount in situ hybridization (WISH) of E15.5 urogenital systems (UGS). We annotated the spatial expression pattern of these genes into eight categories of expression. Genes expressed in renal vesicle and their derivatives, structures absent in the mutant, accounted for the largest number of the observed expression patterns. A number of additional genes in areas not directly overlapping the Wnt4 expression domain were also identified including the cap mesenchyme, the collecting duct, and the cortical interstitium. This study provides a useful compendium of molecular markers for the study of nephrogenesis.

Pubmed ID: 18346943 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: F32 DK060319
  • Agency: NIDDK NIH HHS, United States
    Id: R37 DK054364
  • Agency: NIDDK NIH HHS, United States
    Id: U01 DK070181-04
  • Agency: NIDDK NIH HHS, United States
    Id: F32DK060319
  • Agency: NIDDK NIH HHS, United States
    Id: F32 DK060319-01
  • Agency: NIDDK NIH HHS, United States
    Id: DK070181
  • Agency: NIDDK NIH HHS, United States
    Id: DK054364
  • Agency: NIDDK NIH HHS, United States
    Id: U01 DK070181
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK054364-10
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK054364

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenitoUrinary Development Molecular Anatomy Project (tool)

RRID:SCR_001554

Project aggregates and provides experimental gene expression data from genito-urinary system. International consortium providing molecular atlas of gene expression for developing organs of GenitoUrinary (GU) tract. Mouse strains to facilitate developmental and functional studies within GU system. Experimental protocols and standard specifications. Tutorials describing GU organogenesis and primary data via database. Data are from large-scale in situ hybridization screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of developing mouse genitourinary (GU) system.

View all literature mentions