We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dissociation of the morphological correlates of stress-induced anxiety and fear.

Chronic stress is a powerful modulator of emotional behaviour. Previous studies have shown that distinct neuronal pathways modulate different emotional behaviours: while the amygdala plays a key role in fear-conditioned-to-cue stimuli, the bed nucleus of stria terminalis (BNST) is implicated in anxiety behaviour and responses to contextual stimuli. In addition, the BNST is directly involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis. In the present study, we assessed anxiety (measured in the elevated-plus maze and acoustic startle apparatus) and fear-conditioned responses to light stimuli in rats that had been exposed to either chronic unpredictable stress or corticosterone for 28 days; thereafter, stereological estimates of the BNST and amygdaloid complex were performed, followed by three-dimensional morphometric dendritic analysis. Results show that chronic stress induces hyperanxiety without influencing fear conditioning or locomotion and exploratory activity. Stress-induced hyperanxiety was correlated with increased volumes of the BNST but not of the amygdala. Dendritic remodelling was found to make a significant contribution to the stress-induced increase in BNST volume, primarily due to changes in the anteromedial area of the BNST, an area strongly implicated in emotional behaviour and in the neuroendocrine control of the stress response. Importantly, all of the effects of stress were recapitulated by exogenous corticosterone. In conclusion, this study shows that chronic stress impacts on BNST structure and function; its findings pertain to the modulation of emotional behaviour and the maladaptive response to stress.

Pubmed ID: 18336570 RIS Download

Mesh terms: Amygdala | Animals | Anxiety | Chronic Disease | Fear | Male | Motor Activity | Rats | Rats, Wistar | Septal Nuclei | Stress, Physiological