Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1.

Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.

Pubmed ID: 18272690


  • Hung AY
  • Futai K
  • Sala C
  • Valtschanoff JG
  • Ryu J
  • Woodworth MA
  • Kidd FL
  • Sung CC
  • Miyakawa T
  • Bear MF
  • Weinberg RJ
  • Sheng M


The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Data

February 13, 2008

Associated Grants

  • Agency: NINDS NIH HHS, Id: K08 NS41411
  • Agency: NINDS NIH HHS, Id: R01 NS039444
  • Agency: NINDS NIH HHS, Id: R01 NS039444-07

Mesh Terms

  • Animals
  • Cells, Cultured
  • Cognition
  • Dendritic Spines
  • Hippocampus
  • Male
  • Maze Learning
  • Membrane Proteins
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microscopy, Confocal
  • Mutation
  • Nerve Tissue Proteins
  • Neuronal Plasticity
  • Neurons
  • Patch-Clamp Techniques
  • Synaptic Transmission