• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Dynamic regulation of single-stranded telomeres in Saccharomyces cerevisiae.

The temperature-sensitive phenotypes of yku70Delta and yku80Delta have provided a useful tool for understanding telomere homeostasis. Mutating the helicase domain of the telomerase inhibitor Pif1 resulted in the inactivation of cell cycle checkpoints and the subsequent rescue of temperature sensitivity of the yku70Delta strain. The inactivation of Pif1 in yku70Delta increased overall telomere length. However, the long G-rich, single-stranded overhangs at the telomeres, which are the major cause of temperature sensitivity, were slightly increased. Interestingly, the rescue of temperature sensitivity in strains having both pif1-m2 and yku70Delta mutations depended on the homologous recombination pathway. Furthermore, the BLM/WRN helicase yeast homolog Sgs1 exacerbated the temperature sensitivity of the yku70Delta strain. Therefore, the yKu70-80 heterodimer and telomerase maintain telomere size, and the helicase activity of Pif1 likely also helps to balance the overall size of telomeres and G-rich, single-stranded overhangs in wild-type cells by regulating telomere protein homeostasis. However, the absence of yKu70 may provide other proteins such as those involved in homologous recombination, Sgs1, or Pif1 additional access to G-rich, single-stranded DNA and may determine telomere size, cell cycle checkpoint activation, and, ultimately, temperature sensitivity.

Pubmed ID: 18245359


  • Smith S
  • Banerjee S
  • Rilo R
  • Myung K



Publication Data

February 21, 2008

Associated Grants

  • Agency: Intramural NIH HHS, Id:

Mesh Terms

  • Chromosomes, Fungal
  • DNA Helicases
  • DNA Primers
  • DNA, Fungal
  • DNA, Single-Stranded
  • DNA-Binding Proteins
  • Gene Expression Regulation, Fungal
  • Genotype
  • Polymerase Chain Reaction
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Telomere