• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis.

During pathophysiological muscle wasting, a family of ubiquitin ligases, including muscle RING-finger protein-1 (MuRF1), has been proposed to trigger muscle protein degradation via ubiquitination. Here, we characterized skeletal muscles from wild-type (WT) and MuRF1 knockout (KO) mice under amino acid (AA) deprivation as a model for physiological protein degradation, where skeletal muscles altruistically waste themselves to provide AAs to other organs. When WT and MuRF1 KO mice were fed a diet lacking AA, MuRF1 KO mice were less susceptible to muscle wasting, for both myocardium and skeletal muscles. Under AA depletion, WT mice had reduced muscle protein synthesis, while MuRF1 KO mice maintained nonphysiologically elevated levels of skeletal muscle protein de novo synthesis. Consistent with a role of MuRF1 for muscle protein turnover during starvation, the concentrations of essential AAs, especially branched-chain AAs, in the blood plasma significantly decreased in MuRF1 KO mice under AA deprivation. To clarify the molecular roles of MuRF1 for muscle metabolism during wasting, we searched for MuRF1-associated proteins using pull-down assays and mass spectrometry. Muscle-type creatine kinase (M-CK), an essential enzyme for energy metabolism, was identified among the interacting proteins. Coexpression studies revealed that M-CK interacts with the central regions of MuRF1 including its B-box domain and that MuRF1 ubiquitinates M-CK, which triggers the degradation of M-CK via proteasomes. Consistent with MuRF1's role of adjusting CK activities in skeletal muscles by regulating its turnover in vivo, we found that CK levels were significantly higher in the MuRF1 KO mice than in WT mice. Glucocorticoid modulatory element binding protein-1 and 3-hydroxyisobutyrate dehydrogenase, previously identified as potential MuRF1-interacting proteins, were also ubiquitinated MuRF1-dependently. Taken together, these data suggest that, in a multifaceted manner, MuRF1 participates in the regulation of AA metabolism, including the control of free AAs and their supply to other organs under catabolic conditions, and in the regulation of ATP synthesis under metabolic-stress conditions where MuRF1 expression is induced.

Pubmed ID: 18222470

Authors

  • Koyama S
  • Hata S
  • Witt CC
  • Ono Y
  • Lerche S
  • Ojima K
  • Chiba T
  • Doi N
  • Kitamura F
  • Tanaka K
  • Abe K
  • Witt SH
  • Rybin V
  • Gasch A
  • Franz T
  • Labeit S
  • Sorimachi H

Journal

Journal of molecular biology

Publication Data

March 7, 2008

Associated Grants

None

Mesh Terms

  • Alcohol Oxidoreductases
  • Amino Acids
  • Animals
  • DNA-Binding Proteins
  • Energy Metabolism
  • GTPase-Activating Proteins
  • Humans
  • Mice
  • Mice, Knockout
  • Muscle Proteins
  • Muscle, Skeletal
  • Muscular Atrophy
  • Polycomb Repressive Complex 1
  • Protein Biosynthesis
  • Repressor Proteins
  • Ubiquitin-Protein Ligases
  • Ubiquitination