Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Reprogramming of human somatic cells to pluripotency with defined factors.

Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.

Pubmed ID: 18157115


  • Park IH
  • Zhao R
  • West JA
  • Yabuuchi A
  • Huo H
  • Ince TA
  • Lerou PH
  • Lensch MW
  • Daley GQ



Publication Data

January 10, 2008

Associated Grants


Mesh Terms

  • Adult
  • Animals
  • Cell Differentiation
  • Cell Shape
  • Cells, Cultured
  • DNA Methylation
  • DNA-Binding Proteins
  • Embryonic Stem Cells
  • Fetus
  • Fibroblasts
  • Gene Expression Profiling
  • HMGB Proteins
  • Homeodomain Proteins
  • Humans
  • Infant, Newborn
  • Kruppel-Like Transcription Factors
  • Mice
  • Octamer Transcription Factor-3
  • Pluripotent Stem Cells
  • Promoter Regions, Genetic
  • Proto-Oncogene Proteins c-myc
  • SOXB1 Transcription Factors
  • Teratoma
  • Transcription Factors
  • Transplantation, Heterologous