Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Magnocellular projections as the trigger of top-down facilitation in recognition.

Object recognition is traditionally viewed as a hierarchical, bottom-up neural process. This view has been challenged recently by theoretical models and by findings indicating that top-down processes are involved in facilitating recognition. However, how such high-level information can be activated quickly enough to facilitate the bottom-up processing is yet unknown. We propose that such top-down facilitation is triggered by magnocellular information projected early and rapidly to the orbitofrontal cortex. Using human neuroimaging, we show that stimuli designed to bias processing toward the magnocellular pathway differentially activated the orbitofrontal cortex compared with parvocellular-biased stimuli. Although the magnocellular stimuli had a lower contrast than the parvocellular stimuli, they were recognized faster and just as accurately. Moreover, orbitofrontal activity predicted the performance advantage for the magnocellular, but not for the parvocellular-biased, stimuli, whereas the opposite was true in the fusiform gyrus. Last, analyses of effective connectivity using dynamic causal modeling showed that magnocellular-biased stimuli significantly activated pathways from occipital visual cortex to orbitofrontal cortex and from orbitofrontal cortex to fusiform gyrus. Conversely, parvocellular-biased stimuli significantly activated a pathway from the occipital visual cortex to fusiform gyrus. Our findings support the proposal that fast magnocellular projections linking early visual and inferotemporal object recognition regions with the orbitofrontal cortex facilitate object recognition by enabling the generation of early predictions.

Pubmed ID: 18045917


  • Kveraga K
  • Boshyan J
  • Bar M


The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Data

November 28, 2007

Associated Grants

  • Agency: NCRR NIH HHS, Id: 5P41RR014075
  • Agency: NINDS NIH HHS, Id: NS44319
  • Agency: NINDS NIH HHS, Id: NS50615

Mesh Terms

  • Adult
  • Brain Mapping
  • Color Perception
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Models, Biological
  • Oxygen
  • Pattern Recognition, Visual
  • Photic Stimulation
  • Reaction Time
  • Statistics as Topic
  • Time Factors
  • Visual Cortex
  • Visual Pathways