Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutation of RNA Pol III subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and disrupts zebrafish digestive development.

PLoS biology | Nov 29, 2007

The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-delta yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.

Pubmed ID: 18044988 RIS Download

Mesh terms: Animals | Cell Proliferation | Digestive System | Gene Expression Regulation, Developmental | Larva | Mutation | Oligonucleotides, Antisense | RNA Polymerase III | Zebrafish

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, Id: R01 DK054942
  • Agency: NIDDK NIH HHS, Id: R01-DK54942
  • Agency: Intramural NIH HHS, Id: K08-DK60529
  • Agency: NIDDK NIH HHS, Id: R01 DK061142
  • Agency: NIDDK NIH HHS, Id: R01-DK61142
  • Agency: NIDDK NIH HHS, Id: K08 DK060529
  • Agency: NIDDK NIH HHS, Id:

ZFIN (Data, Gene Expression)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenBank

NIH genetic sequence database that provides an annotated collection of all publicly available DNA sequences for almost 280 000 formally described species. (Jan 2014) These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of the International Nucleotide Sequence Database Collaboration and daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.

tool

View all literature mentions

Intramural Research Program

A research program of the NIA which focuses on neuroscience, aging biology, and translational gerontology. The central focus of the program's research is understanding age-related changes in physiology and the ability to adapt to environmental stress, and using that understanding to develop insight about the pathophysiology of age-related diseases. The IRP webpage provides access to other NIH resources such as the Biological Biochemical Image Database, the Bioinformatics Portal, and the Baltimore Longitudinal Study of Aging.

tool

View all literature mentions