Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Interleukin-27 directly induces differentiation in hematopoietic stem cells.

Blood | Feb 15, 2008

http://www.ncbi.nlm.nih.gov/pubmed/18042804

Interleukin (IL)-27, one of the most recently discovered IL-6 family cytokines, activates both the signal transducer and activator of transcription (STAT)1 and STAT3, and plays multiple roles in pro- and anti-inflammatory immune responses. IL-27 acts on various types of cells including T, B, and macrophage through the common signal-transducing receptor gp130 and its specific receptor WSX-1, but the effect of IL-27 on hematopoietic stem cells (HSCs) remains unknown. Here, we show that IL-27 together with stem cell factor (SCF) directly acts on HSCs and supports their early differentiation in vitro and in vivo. CD34(-/low)c-Kit(+)Sca-1(+)lineage marker(-) (CD34(-)KSL) cells, a population highly enriched in mouse HSCs, were found to express both IL-27 receptor subunits. In vitro cultures of CD34(-)KSL cells with IL-27 and SCF resulted in an expansion of progenitors including short-term repopulating cells, while some of their long-term repopulating activity also was maintained. To examine its in vivo effect, transgenic mice expressing IL-27 were generated. These mice exhibited enhanced myelopoiesis and impaired B lymphopoiesis in the bone marrow with extramedullary hematopoiesis in the spleen. Moreover, IL-27 similarly acted on human CD34(+) cells. These results suggest that IL-27 is one of the limited cytokines that play a role in HSC regulation.

Pubmed ID: 18042804 RIS Download

Mesh terms: Animals | Antigens, CD34 | Bone Marrow Cells | Cell Differentiation | DNA Primers | Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) | Hematopoietic Stem Cells | Humans | Interleukins | Mice | Recombinant Proteins | Reverse Transcriptase Polymerase Chain Reaction