Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Emergence of cellular markers and functional ionotropic glutamate receptors on tangentially dispersed cells in the developing mouse retina.

The Journal of comparative neurology | 2008

Tangential cell dispersion in the retina is a spacing mechanism that establishes a regular mosaic organization among cell types and contributes to their final positioning. The present study has used the X-inactivation transgenic mouse expressing the lacZ reporter gene on one X chromosome. Due to X chromosome inactivation, 50% of early progenitor cells express beta-galactosidase (beta-Gal); therefore, all cells derived from a particular beta-Gal-expressing progenitor cell can be identified in labeled columns. The radial segregation of clonally related beta-Gal-positive and beta-Gal-negative cells can be used to determine whether single cells transgress a clonal boundary in the retina. We investigated the extent to which particular cell classes tangentially disperse by analyzing the placement of labeled cells expressing particular markers at several ages and quantifying their tangential displacement. Retinal neurons expressing cell markers at postnatal day (P) 1 have a greater degree of tangential dispersion compared with amacrine and bipolar cells at P5-6. We also studied whether there is a functional correlation with these dispersion patterns by investigating the emergence of functional ionotropic glutamate receptors. To determine the degree of functional glutamate receptor activation, agmatine (AGB) was used in combination with cell-specific labeling. AGB permeates functional glutamate receptor channels following activation with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate or N-methyl-D-aspartate (NMDA). Within these receptor groups, high concentrations of AMPA, kainate, and NMDA are associated with a high degree of tangential dispersion in the adult. Developmentally, functional kainate and AMPA receptors were detected by P1 and were associated with tangentially dispersed cells. Functional NMDA receptors were not detected as early as kainate and AMPA receptors. These results indicate that cells generated early during development are more likely to disperse tangentially compared with those generated later in development. Therefore, functional AMPA and kainate receptors may play a critical role in tangentially displacing cell types.

Pubmed ID: 18041773 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Recoverin (antibody)

RRID:AB_2253622

This polyclonal targets Rcvrn

View all literature mentions

Anti-Somatostatin (antibody)

RRID:AB_2255374

This polyclonal targets Sst

View all literature mentions

RABBIT IGG FRACTION TO β-GALACTOSIDASE (antibody)

RRID:AB_2334934

This unknown targets RABBIT IGG FRACTION TO β-GALACTOSIDASE

View all literature mentions

Rabbit Anti-Agmatine (1-Amino-4-guanidobutane) , Unconjugated (antibody)

RRID:AB_262157

This unknown targets Agmatine (1-Amino-4-guanidobutane)

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody (antibody)

RRID:AB_390204

This polyclonal targets Tyrosine Hydroxylase

View all literature mentions

Calretinin (antibody)

RRID:AB_398225

This monoclonal targets Calretinin

View all literature mentions