Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance.

Biochemistry | Nov 13, 2007

Residues 1-89 constitute the Asn- and Gln-rich segment of the Ure2p protein and produce the [URE3] prion of Saccharomyces cerevisiae by forming the core of intracellular Ure2p amyloid. We report the results of solid-state nuclear magnetic resonance (NMR) measurements that probe the molecular structure of amyloid fibrils formed by Ure2p1-89 in vitro. Data include measurements of intermolecular magnetic dipole-dipole couplings in samples that are 13C-labeled at specific sites and two-dimensional 15N-13C and 13C-13C NMR spectra of samples that are uniformly 15N- and 13C-labeled. Intermolecular dipole-dipole couplings indicate that the beta-sheets in Ure2p1-89 fibrils have an in-register parallel structure. An in-register parallel beta-sheet structure permits polar zipper interactions among side chains of Gln and Asn residues and explains the tolerance of [URE3] to scrambling of the sequence in residues 1-89. Two-dimensional NMR spectra of uniformly labeled Ure2p1-89 fibrils, even when fully hydrated, show NMR linewidths that exceed those in solid-state NMR spectra of fibrils formed by residues 218-289 of the HET-s prion protein of Podospora anserina [as originally reported in Siemer, A. B., Ritter, C., Ernst, M., Riek, R., and Meier, B. H. (2005) Angew. Chem., Int. Ed. 44, 2441-2444 and confirmed by measurements reported here] by factors of three or more, indicating a lower degree of structural order at the molecular level in Ure2p1-89 fibrils. The very high degree of structural order in HET-s fibrils indicated by solid-state NMR data is therefore not a universal characteristic of prion proteins, and is likely to be a consequence of the evolved biological function of HET-s in heterokaryon incompatibility. Analysis of cross peak intensities in two-dimensional NMR spectra of uniformly labeled Ure2p1-89 fibrils suggests that certain portions of the amino acid sequence may not participate in a rigid beta-sheet structure, possibly including portions of the Asn-rich segment between residues 44 and 76.

Pubmed ID: 17953455 RIS Download

Mesh terms: Amino Acid Sequence | Amyloid | Glutathione Peroxidase | Microscopy, Electron, Transmission | Molecular Sequence Data | Nuclear Magnetic Resonance, Biomolecular | Peptide Fragments | Prions | Protein Structure, Secondary | Saccharomyces cerevisiae Proteins

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.