Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly.

Molecular cell | Aug 17, 2007

http://www.ncbi.nlm.nih.gov/pubmed/17707231

Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.

Pubmed ID: 17707231 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Binding Sites | Cell Line | Chromosomal Proteins, Non-Histone | DNA Methylation | Gene Expression Regulation | Histone-Lysine N-Methyltransferase | Histones | Humans | Lysine | Mice | Models, Molecular | Molecular Mimicry | Molecular Sequence Data | Multiprotein Complexes | Phosphorylation | Protein Binding | Protein Methyltransferases

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.