Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.

Molecular vision | Jun 15, 2007

PURPOSE: In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. METHODS: Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. RESULTS: Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. CONCLUSIONS: These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.

Pubmed ID: 17653034 RIS Download

Mesh terms: Adaptation, Ocular | Adenosine Triphosphate | Aniline Compounds | Animals | Calcium | Cell Membrane | Dark Adaptation | Endoplasmic Reticulum | Fluorescent Dyes | Imaging, Three-Dimensional | Immunohistochemistry | Kinetics | Mice | Mice, Inbred C57BL | Microscopy, Confocal | Microscopy, Electron | Mitochondria | Osmolar Concentration | Presynaptic Terminals | Retina | Retinal Cone Photoreceptor Cells | Retinal Rod Photoreceptor Cells | Sodium-Calcium Exchanger | Synapses | Time Factors | Tissue Distribution | Tomography | Xanthenes

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NEI NIH HHS, Id: T35 EY007088
  • Agency: NCRR NIH HHS, Id: RR04050
  • Agency: NEI NIH HHS, Id: T32 EY007024
  • Agency: NEI NIH HHS, Id: F32 EY007088
  • Agency: NEI NIH HHS, Id: EY07024
  • Agency: NCRR NIH HHS, Id: P41 RR004050
  • Agency: NINDS NIH HHS, Id: R01 NS014718
  • Agency: NINDS NIH HHS, Id: NS14718
  • Agency: NEI NIH HHS, Id: EY07088
  • Agency: NEI NIH HHS, Id: R01 EY007088
  • Agency: NIEHS NIH HHS, Id: R01 ES012482
  • Agency: NIEHS NIH HHS, Id: ES012482

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.

NIH Image

Public image processing and analysis program for Macintosh.


View all literature mentions