Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution.

Cell | Jun 29, 2007

http://www.ncbi.nlm.nih.gov/pubmed/17604726

Neurosecretory control centers form part of the forebrain in many animal phyla, including vertebrates, insects, and annelids. The evolutionary origin of these centers is largely unknown. To identify conserved, and thus phylogenetically ancient, components of neurosecretory brain centers, we characterize and compare neurons that express the prohormone vasotocin (vasopressin/oxytocin)-neurophysin in the developing forebrain of the annelid Platynereis dumerilii and of the zebrafish. These neurons express the same tissue-restricted microRNA, miR-7, and conserved, cell-type-specific combinations of transcription factors (nk2.1, rx, and otp) that specify their identity, as evidenced by the specific requirement of zebrafish rx3 for vasotocin-neurophysin expression. MiR-7 also labels another shared population of neurons containing RFamides. Since the vasotocinergic and RFamidergic neurons appear to be directly sensory in annelid and fish, we propose that cell types with dual sensory-neurosecretory properties were the starting point for the evolution of neurosecretory brain centers in Bilateria.

Pubmed ID: 17604726 RIS Download

Mesh terms: Animals | Annelida | Biological Evolution | Biological Markers | Conserved Sequence | Evolution, Molecular | Hypothalamus | MicroRNAs | Microscopy, Electron, Transmission | Neurons, Afferent | Neuropeptides | Neurosecretion | Neurosecretory Systems | Species Specificity | Transcription Factors | Vasotocin | Zebrafish