Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Drosophila Ctr1A functions as a copper transporter essential for development.

The Journal of biological chemistry | 2007

Copper is an essential trace element required by all aerobic organisms as a cofactor for enzymes involved in normal growth, development, and physiology. Ctr1 proteins are members of a highly conserved family of copper importers responsible for copper uptake across the plasma membrane. Mice lacking Ctr1 die during embryogenesis from widespread developmental defects, demonstrating the need for adequate copper acquisition in the development of metazoan organisms via as yet uncharacterized mechanisms. Whereas the fruit fly, Drosophila melanogaster, expresses three Ctr1 genes, ctr1A, ctr1B, and ctr1C, little is known about their protein isoform-specific roles. Previous studies demonstrated that Ctr1B localizes to the plasma membrane and is not essential for development unless flies are severely copper-deficient or are subjected to copper toxicity. Here we demonstrate that Ctr1A also resides on the plasma membrane and is the primary Drosophila copper transporter. Loss of Ctr1A results in copper-remedial developmental arrest at early larval stages. Ctr1A mutants are deficient in the activity of copper-dependent enzymes, including cytochrome c oxidase and tyrosinase. Amidation of Phe-Met-Arg-Phe-amides, a group of cardiomodulatory neuropeptide hormones that are matured via the action of peptidylglycine alpha-hydroxylating monooxygenase, is defective in neuroendocrine cells of Ctr1A mutant larvae. Moreover, both the Phe-Met-Arg-Phe-amide maturation and heart beat rate defects observed in Ctr1A mutant larvae can be partially rescued by exogenous copper. These studies establish clear physiological distinctions between two Drosophila plasma membrane copper transport proteins and demonstrate that copper import by Ctr1A is required to drive neuropeptide maturation during normal growth and development.

Pubmed ID: 17573340 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

  • Agency: NIEHS NIH HHS, United States
    Id: 5P42ES010356

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.