• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.

Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although the genetic components involved in MMEJ are largely unknown, those in NHEJ and SSA are characterized in some detail. Here, we surveyed the role of NHEJ or SSA factors in joining of double-strand breaks (DSBs) with no complementary DNA ends that rely primarily on MMEJ repair. We found that MMEJ requires the nuclease activity of Mre11/Rad50/Xrs2, 3' flap removal by Rad1/Rad10, Nej1, and DNA synthesis by multiple polymerases including Pol4, Rad30, Rev3, and Pol32. The mismatch repair proteins, Rad52 group genes, and Rad27 are dispensable for MMEJ. Sae2 and Tel1 promote MMEJ but inhibit NHEJ, likely by regulating Mre11-dependent ssDNA accumulation at DNA break. Our data support the role of Sae2 and Tel1 in MMEJ and genome integrity.

Pubmed ID: 17565964

Authors

  • Lee K
  • Lee SE

Journal

Genetics

Publication Data

August 24, 2007

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM 071011

Mesh Terms

  • Base Sequence
  • DNA Breaks
  • DNA Helicases
  • DNA Polymerase beta
  • DNA Repair
  • DNA Repair Enzymes
  • DNA, Fungal
  • DNA, Single-Stranded
  • DNA-Binding Proteins
  • DNA-Directed DNA Polymerase
  • Endodeoxyribonucleases
  • Endonucleases
  • Exodeoxyribonucleases
  • Genes, Fungal
  • Intracellular Signaling Peptides and Proteins
  • Models, Genetic
  • Protein-Serine-Threonine Kinases
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Single-Strand Specific DNA and RNA Endonucleases