Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Functional interaction between phosducin-like protein 2 and cytosolic chaperonin is essential for cytoskeletal protein function and cell cycle progression.

The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.

Pubmed ID: 17429077


  • Stirling PC
  • Srayko M
  • Takhar KS
  • Pozniakovsky A
  • Hyman AA
  • Leroux MR


Molecular biology of the cell

Publication Data

June 25, 2007

Associated Grants


Mesh Terms

  • Actins
  • Alleles
  • Carrier Proteins
  • Cell Cycle
  • Cell Nucleus
  • Chaperonin Containing TCP-1
  • Chaperonins
  • Cytoskeletal Proteins
  • Cytoskeleton
  • GTP-Binding Proteins
  • Humans
  • Microtubules
  • Nerve Tissue Proteins
  • Phenotype
  • Recombinant Fusion Proteins
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Temperature