• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway.

BACKGROUND: A common property of signal transduction systems is that they rapidly lose their ability to respond to a given stimulus. For instance in yeast, the mitogen-activated protein (MAP) kinase Hog1 is activated and inactivated within minutes, even when the osmotic-stress stimulus is sustained. RESULTS: Here, we used a combination of experimental and computational analyses to investigate the dynamic behavior of Hog1 activation in vivo. Computational modeling suggested that a negative-feedback loop operates early in the pathway and leads to rapid attenuation of Hog1 signaling. Experimental analysis revealed that the membrane-bound osmosensor Sho1 is phosphorylated by Hog1 and that phosphorylation occurs on Ser-166. Moreover, Sho1 exists in a homo-oligomeric complex, and phosphorylation by Hog1 promotes a transition from the oligomeric to monomeric state. A phosphorylation-site mutation (Sho1(S166E)) diminishes the formation of Sho1-oligomers, dampens activation of the Hog1 kinase, and impairs growth in high-salt or sorbitol conditions. CONCLUSIONS: These findings reveal a novel phosphorylation-dependent feedback loop leading to diminished cellular responses to an osmotic-stress stimulus.

Pubmed ID: 17363249