Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential modes of termination of amygdalothalamic and amygdalocortical projections in the monkey.

The Journal of comparative neurology | 2007

The amygdala complex participates in multiple systems having to do with affective processes. It has been implicated in human disorders of social and emotional behavior, such as autism. Of the interconnected functional networks, considerable research in rodents and primates has focused on connections between the amygdala and orbitofrontal cortex (OFC). The amygdala projects to OFC by both a direct amygdalocortical (AC) pathway and an indirect pathway through mediodorsal thalamus. In the rat, retrograde tracer experiments indicate that the AC and amygdalothalamic (AT) pathways originate from separate populations, and may therefore convey distinctive information, although the characteristics of these pathways remain unclear. To investigate this issue in monkeys we made anterograde tracer injections in the basolateral amygdala complex (BLC; n = 3). Three distinctive features were found preferentially associated with the AT or AC pathways. First, AT terminations are large (average diameter = 3.5 microm; range = 1.2-7.0 microm) and cluster around proximal dendrites, in contrast with small-bouton AC terminations. Second, AT terminations form small arbors (diameter approximately 0.1 mm), while AC are widely divergent (often >1.0 mm long). The AT terminations features are reminiscent of large bouton, "driver" corticothalamic terminations. Finally, AC but not AT terminations are positive for zinc (Zn), a neuromodulator associated with synaptic plasticity. From these results we suggest that AC and AT terminations originate from distinct populations in monkey as well as in rodent. Further work is necessary to determine the degree and manner of their segregation and how these subsystems interact within a broader connectivity network.

Pubmed ID: 17348015 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Monoclonal anti Parvalbumin (antibody)

RRID:AB_10000343

This monoclonal targets parvalbumin

View all literature mentions