Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Fibroblast growth factor promotes the development of deep cerebellar nuclear neurons in dissociated mouse cerebellar cultures.

Brain research | 2007

Neurons of the deep cerebellar nuclei and excitatory cerebellar interneurons arise from the rhombic lip of the cerebellar anlage. In contrast, Purkinje cells and inhibitory interneurons arise in the neuroepithelium of the fourth ventricle. During development, the projection neurons of the cerebellar nuclei are born first (embryo age (E)9-E12 in mouse) followed closely by the Purkinje cells (E10-E13). Cerebellar interneurons arise later and differentiate postnatally. We have examined the development of cerebellar nuclear neurons in primary cultures. Embryonic cerebella from E15 to E18 pups were cultured 21 days in vitro. Three distinct classes of large neurons were identified: those expressing calbindin, typical of Purkinje cells; those expressing neurogranin (Golgi cells); and a third class expressing parvalbumin but not calbindin, consistent with the morphology of large projection neurons of the cerebellar nuclei. These neurons also express Tbr1, a specific antigenic marker of cerebellar nuclear neurons. Birthdating by using BrdU incorporation shows that the putative DCN neurons are not born in vitro. To confirm their identity the E18 cerebellum was dissected into cerebellar nuclear-containing (ventral) and -lacking (dorsal) halves, which were then dissociated and cultured separately. Only the ventral cultures produce putative cerebellar nuclear neurons. In contrast to E15-E18 cultures, dissociated E13-E14 cerebella in vitro do not yield putative cerebellar nuclear neurons. However, E14 cultures do produce them when fibroblast growth factors are added to the medium. We conclude that FGF signaling is required for the maturation of cerebellar nuclear neurons.

Pubmed ID: 17300764 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Charles River Laboratories (tool)

RRID:SCR_003792

Commercial organism provider selling mice, rats and other model animals. American corporation specializing in a variety of pre-clinical and clinical laboratory services for the pharmaceutical, medical device and biotechnology industries. It also supplies assorted biomedical products and research and development outsourcing services for use in the pharmaceutical industry. (Wikipedia)

View all literature mentions