Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Adipocyte enhancer-binding protein 1 modulates adiposity and energy homeostasis.

http://www.ncbi.nlm.nih.gov/pubmed/17299101

OBJECTIVE: To determine whether adipocyte enhancer binding protein (AEBP) 1, a transcriptional repressor that is down-regulated during adipogenesis, functions as a critical regulator of adipose tissue homeostasis through modulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) tumor suppressor activity and mitogen-activated protein kinase (MAPK) activation. RESEARCH METHODS AND PROCEDURES: We examined whether AEBP1 physically interacts with PTEN in 3T3-L1 cells by coimmunoprecipitation analysis. We generated AEBP1-null mice and examined the physiological role of AEBP1 as a key modulator of in vivo adiposity. Using adipose tissue from wild-type and AEBP1-null animals, we examined whether AEBP1 affects PTEN protein level. RESULTS: AEBP1 interacts with PTEN, and deficiency of AEBP1 increases adipose tissue PTEN mass. AEBP1-null mice have reduced adipose tissue mass and enhanced apoptosis with suppressed survival signal. Primary pre-adipocytes from AEBP1-null adipose tissues exhibit lower basal MAPK activity with defective proliferative potential. AEBP1-null mice are also resistant to diet-induced obesity, suggesting a regulatory role for AEBP1 in energy homeostasis. DISCUSSION: Our results suggest that AEBP1 negatively regulates adipose tissue PTEN levels, in conjunction with its role in proliferation and differentiation of pre-adipocytes, as a key functional role in modulation of in vivo adiposity.

Pubmed ID: 17299101 RIS Download

Mesh terms: 3T3-L1 Cells | Adipose Tissue, White | Adiposity | Animals | Apoptosis | Carboxypeptidases | Energy Metabolism | Female | Homeostasis | Male | Mice | Mice, Inbred C57BL | Mice, Knockout | PTEN Phosphohydrolase | Protein Binding | Protein Processing, Post-Translational | Repressor Proteins

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.