• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.

Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis.

Pubmed ID: 17266679


  • Hansen M
  • Taubert S
  • Crawford D
  • Libina N
  • Lee SJ
  • Kenyon C


Aging cell

Publication Data

February 1, 2007

Associated Grants


Mesh Terms

  • Animals
  • Caenorhabditis elegans
  • Caenorhabditis elegans Proteins
  • Caloric Restriction
  • Eukaryotic Initiation Factors
  • Gene Expression Regulation
  • Heat Stress Disorders
  • Longevity
  • Protein Biosynthesis
  • Protein-Serine-Threonine Kinases
  • Receptor, Insulin
  • Ribosomal Protein S6 Kinases
  • Ribosomal Proteins
  • Saccharomyces cerevisiae Proteins
  • Signal Transduction
  • Survival Rate
  • Transcription Factors