Our hosting provider will be performing UPS maintenance on Tuesday, Oct 25, 2016 between 8 AM and 5 PM PDT. SciCrunch searching services will be down during this time.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity.


The prostate-specific homeodomain protein NKX3.1 is a tumor suppressor that is commonly down-regulated in human prostate cancer. Using an NKX3.1 affinity column, we isolated topoisomerase I (Topo I) from a PC-3 prostate cancer cell extract. Topo I is a class 1B DNA-resolving enzyme that is ubiquitously expressed in higher organisms and many prokaryotes. NKX3.1 interacts with Topo I to enhance formation of the Topo I-DNA complex and to increase Topo I cleavage of DNA. The two proteins interacted in affinity pull-down experiments in the presence of either DNase or RNase. The NKX3.1 homeodomain was essential, but not sufficient, for the interaction with Topo I. NKX3.1 binding to Topo I occurred independently of the Topo I NH2-terminal domain. The binding of equimolar amounts of Topo I to NKX3.1 caused displacement of NKX3.1 from its cognate DNA recognition sequence. Topo I activity in prostates of Nkx3.1+/- and Nkx3.1-/- mice was reduced compared with wild-type mice, whereas Topo I activity in livers, where no NKX3.1 is expressed, was independent of Nkx3.1 genotype. Endogenous Topo I and NKX3.1 could be coimmunoprecipitated from LNCaP cells, where NKX3.1 and Topo I were found to colocalize in the nucleus and comigrate within the nucleus in response to either gamma-irradiation or mitomycin C exposure, two DNA-damaging agents. This is the first report that a homeodomain protein can modify the activity of Topo I and may have implications for organ-specific DNA replication, transcription, or DNA repair.

Pubmed ID: 17234752