Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants.

Proceedings of the National Academy of Sciences of the United States of America | 2007

In vertebrates, skeletal myogenesis is initiated by the generation of myoblasts followed by their differentiation to myocytes and the formation of myofibers. The determination of myoblasts and their differentiation are controlled by muscle regulatory factors that are activated at specific stages during myogenesis. During late embryonic and fetal stages a distinct population of resident proliferating progenitor cells is the major source of myogenic cells. How the differentiation of myoblasts and progenitor cells is regulated is not clear. We show that in mouse embryos the Notch ligand Delta1 (Dll1) controls both differentiation of early myoblasts and maintenance of myogenic progenitor cells. Early dermomyotome-derived myoblasts are determined normally in Dll1 mutant embryos, but their differentiation is accelerated, leading to a transient excess of myotomal muscle fibers. Similarly, migratory hypaxial myogenic cells colonize the limb buds and activate muscle regulatory factor expression normally, but muscle differentiation progresses more rapidly. Resident progenitor cells defined by Pax3/Pax7 expression are formed initially, but they are progressively lost and virtually absent at embryonic day 14.5. Muscle growth declines beginning around embryonic day 12, leading to subsequent severe muscle hypotrophy in hypomorphic Dll1 fetuses. We suggest that premature and excessive differentiation leads to depletion of progenitor cells and cessation of muscle growth, and we conclude that Dll1 provides essential signals that are required to prevent uncontrolled differentiation early and ensure sustained muscle differentiation during development.

Pubmed ID: 17194759 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.