Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor.

GPR4 is a G protein-coupled receptor expressed in the vasculature, lung, kidney, and other tissues. In vitro ectopic overexpression studies implicated GPR4 in sensing extracellular pH changes leading to cyclic AMP (cAMP) production. To investigate its biological roles in vivo, we generated GPR4-deficient mice by homologous recombination. Whereas GPR4-null adult mice appeared phenotypically normal, neonates showed a higher frequency of perinatal mortality. The average litter size from GPR4(-/-) intercrosses was approximately 30% smaller than that from GPR4(+/+) intercrosses on N3 and N5 C57BL/6 genetic backgrounds. A fraction of knockout embryos and neonates had spontaneous hemorrhages, dilated and tortuous subcutaneous blood vessels, and defective vascular smooth muscle cell coverage. Mesangial cells in kidney glomeruli were also significantly reduced in GPR4-null neonates. Some neonates exhibited respiratory distress with airway lining cell metaplasia. To examine whether GPR4 is functionally involved in vascular pH sensing, an ex vivo aortic ring assay was used under defined pH conditions. Compared to wild-type aortas, microvessel outgrowth from GPR4-null aortas was less inhibited by acidic extracellular pH. Treatment with an analog of cAMP, a downstream effector of GPR4, abolished microvessel outgrowth bypassing the GPR4-knockout phenotype. These results suggest that GPR4 deficiency leads to partially penetrant vascular abnormalities during development and that this receptor functions in blood vessel pH sensing.

Pubmed ID: 17145776 RIS Download

Mesh terms: Animals | Animals, Newborn | Aorta | Blood Vessels | Cells, Cultured | Crosses, Genetic | Embryo, Mammalian | Female | Gene Targeting | Genotype | Hemorrhage | Humans | Hydrogen-Ion Concentration | Litter Size | Lung | Male | Mesangial Cells | Mice | Mice, Inbred C57BL | Mice, Knockout | Penetrance | Receptors, G-Protein-Coupled | Respiratory Tract Diseases

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, Id: T32 CA009056
  • Agency: NCI NIH HHS, Id: T32 CA 009056

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.