Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity.

Insect molecular biology | 2006

We have identified 44 serine protease (SP) and 13 serine protease homolog (SPH) genes in the genome of Apis mellifera. Most of these genes encode putative secreted proteins, but four SPs and three SPHs may associate with the plasma membrane via a transmembrane region. Clip domains represent the most abundant non-catalytic structural units in these SP-like proteins -12 SPs and six SPHs contain at least one clip domain. Some of the family members contain other modules for protein-protein interactions, including disulphide-stabilized structures (LDL(r)A, SRCR, frizzled, kringle, Sushi, Wonton and Pan/apple), carbohydrate-recognition domains (C-type lectin and chitin-binding), and other modules (such as zinc finger, CUB, coiled coil and Sina). Comparison of the sequences with those from Drosophila led to a proposed SP pathway for establishing the dorsoventral axis of honey bee embryos. Multiple sequence alignments revealed evolutionary relationships of honey bee SPs and SPHs with those in Drosophila melanogaster, Anopheles gambiae, and Manduca sexta. We identified homologs of D. melanogaster persephone, M. sexta HP14, PAP-1 and SPH-1. A. mellifera genome includes at least five genes for potential SP inhibitors (serpin-1 through -5) and three genes of SP putative substrates (prophenoloxidase, spätzle-1 and spätzle-2). Quantitative RT-PCR analyses showed an elevation in the mRNA levels of SP2, SP3, SP9, SP10, SPH41, SPH42, SP49, serpin-2, serpin-4, serpin-5, and spätzle-2 in adults after a microbial challenge. The SP41 and SP6 transcripts significantly increased after an injection of Paenibacillus larva, but there was no such increase after injection of saline or Escherichia coli. mRNA levels of most SPs and serpins significantly increased by 48 h after the pathogen infection in 1st instar larvae. On the contrary, SP1, SP3, SP19 and serpin-5 transcript levels reduced. These results, taken together, provide a framework for designing experimental studies of the roles of SPs and related proteins in embryonic development and immune responses of A. mellifera.

Pubmed ID: 17069636 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R37 GM041247
  • Agency: NIGMS NIH HHS, United States
    Id: GM58634
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM058634
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM041247
  • Agency: NIGMS NIH HHS, United States
    Id: GM41247

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SMART (tool)

RRID:SCR_005026

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

View all literature mentions

TreeView (tool)

RRID:SCR_013503

Software to graphically browse results of clustering and other analyses from Cluster.

View all literature mentions